Distributed Overlay Construction to Support Policy-based Access Control

Bong Jun Ko*, Starsky W Ho, Kang-won Lee
(IBM T. J. Watson Research)
Sid Chau (University of Cambridge)
A Tale of Two: “Once upon a time …”
A Tale of Two: Building an information sharing network

- **Rules of information sharing**
 - “Everyone is permitted to access the information of his/her country.”
 - “Generals are permitted to access the information of the other country.”
 - “Soldiers are not permitted to access the information of the other country.”

- **Trust**
 - Authorized personnel will not send the information to unauthorized personnel, but will send and forward the information to other authorized personnel over multi-hop paths.

- **Mission:** “**Construct a network of secure links that can be used to pass the information around, without violating the policies.**”

- **Mission#2:** “**Don’t create too many links. They are expensive.**”
A Tale of Two: Building an information sharing network

- Rules of information sharing
 - “Everyone is permitted to access the information of his/her country.”
 - “Generals are permitted to access the information of the other country.”
 - “Soldiers are not permitted to access the information of the other country.”

- Trust
 - Authorized personnel will not send the information to unauthorized personnel, but will send and forward the information to other authorized personnel over multi-hop paths.

- Mission: “Construct a network of secure links that can be used to pass the information around, without violating the policies.”

- Mission#2: “Don’t create too many links. They are expensive.”
Node grouping by access control policy

Access-control policy statement to node grouping

“If $f_k(r) = true$ and $g_k(n) = true$, then permit n’s access to r.”

$\rightarrow N_k = \{ n \mid g_k(n) = true \}$: access-control group k

If \{origin(data)=Oblivia\} AND
{ {country(person)=Oblivia} OR {rank(person)=General} },
then
Permit the person’s access to the data

If \{origin(data)=Memorabilia\} AND
{ {country(person)=Memorabilia} OR {rank(person)=General} },
then
Permit the person’s access to the data
Node grouping by access control policy (modern example)

Access-control policy statement to node grouping

“If $f_k(r) = true$ and $g_k(n) = true$, then permit n’s access to r”.

$\rightarrow N_k = \{n \mid g_k(n) = true\} : \text{access-control group } k$

- If organization(n) == organization(s), then permit n’s access to data from s.
- If roles(n) includes dataType(s), permit n’s access to data from s.

Permit n’s access to data from s:
- If organization(s) == A and organization(n) == A,
- If organization(s) == B and organization(n) == B,
- If dataType(s) == AUDIO and AUDIO \in roles(n),
- If dataType(s) == VIDEO and VIDEO \in roles(n), or
- If dataType(s) == VIBR and VIBR \in roles(n)
System architecture

Access controlled groups

Shared overlay network

Physical Networks
Policy-compatible Overlay Construction (PoCO) Problem

- **Given**
 - Set of nodes: \(N = \{1, 2, \ldots, n\} \)
 - Set of groups of nodes: \(\Omega = \{N_1, N_2, \ldots N_K\} \), \(N_k \) is a subset of \(N \)

- A graph \(G=(N,E) \) is **policy-compatible** w.r.t. \(\Omega \) if, for each group \(N_k \), the subgraph \(G_k = (N_k, E_k) \) in \(G \) is a connected graph.

- Find a policy-compatible graph \(G^*=(N,E^*) \) such that \(|E^*| \leq |E| \) for all policy-compatible graphs \(G = (N,E) \).

- NP-Complete problem

Q: Which of the followings is NOT policy-compatible?

(a) ![Diagram (a)](image1)
(b) ![Diagram (b)](image2)
(c) ![Diagram (c)](image3)
(d) ![Diagram (d)](image4)
Centralized Overlay Construction

- **Group-connectedness**
 - $C_i = \{(u,v) | u$ and v are not connected in $N_i, u \in N_i, v \in N_i\}$
 - $C = \Sigma_i |C_i|

- **Greedy addition of links**
 - At each step, a link that decreases C the most is selected (until $C = 0$).

Start: $C_1 = \{\{1,2\}, \{2,3\}, \{1,3\}\}$, $C_2 = \{\{2,3\}, \{3,4\}, \{2,4\}\}$

Step1: $C_1 = \{\{1,2\}, \{2,3\}, \{1,3\}\}$, $C_2 = \{\{2,3\}, \{3,4\}, \{2,4\}\}$

Step2: $C_1 = \{\{1,2\}, \{2,3\}, \{1,3\}\}$, $C_2 = \{\{2,3\}, \{3,4\}, \{2,4\}\}$

Step3: $C_1 = \{\{1,2\}, \{2,3\}, \{1,3\}\}$, $C_2 = \{\{2,3\}, \{3,4\}, \{2,4\}\}$

$N_1 = \{1,2,3\}$, $N_2 = \{2,3,4\}$
Distributed Overlay Construction

- Each node adds a link that maximizes group-connected pairs in its respective groups.
- Each node also deletes *redundant* links in its groups.
 - A link \((u,v)\) is redundant if deleting it does not render \(u\) and \(v\) disconnected in their group(s).
- Each node exchanges *its local link information* with other nodes that belong to the same group via distributed protocols.

\[N_1 = \{1,2,3\},\]
\[N_2 = \{2,3,4\}\]

Start:
\[C_1 = \{\{1,2\}, \{2,3\}, \{1,3\}\}, \quad C_2 = \{\{2,3\}, \{3,4\}, \{2,4\}\}\]

Node 1:
\[C_1 = \{\{1,2\}, \{2,3\}, \{1,3\}\}, \quad C_2 = \{\{2,3\}, \{3,4\}, \{2,4\}\}\]

Node 4:
\[C_1 = \{\{1,2\}, \{2,3\}, \{1,3\}\}, \quad C_2 = \{\{2,3\}, \{3,4\}, \{2,4\}\}\]

Node 1:
\[C_1 = \{\{1,2\}, \{2,3\}, \{1,3\}\}, \quad C_2 = \{\{2,3\}, \{3,4\}, \{2,4\}\}\]

Node 3:
\[C_1 = \{\{1,2\}, \{2,3\}, \{1,3\}\}, \quad C_2 = \{\{2,3\}, \{3,4\}, \{2,4\}\}\]

\[C_1 = \{\{1,2\}, \{2,3\}, \{1,3\}\}, \quad C_2 = \{\{2,3\}, \{3,4\}, \{2,4\}\}\]
Distributed Overlay Construction: Convergence

Starting from an arbitrary graph G_0, the evolving sequence of the graphs (G_0, G_1, G_2, \cdots) generated by the distributed process converges to a stable graph $G = (N, E)$ which is compatible w.r.t. the policy grouping in finite number of steps.
Performance (Empirical Data)

- Conference program committee membership data
- 482 individuals in 32 conference PCs in 2006.
- Policy: “Data can be shared among members in the same PC”.

* G-MST (Generalized Minimum Spanning Tree): Similar to Reverse-delete algorithm for MST, but deletes redundant edges
Performance (Synthetic Input)

- $|N|$: # of nodes (10 ~ 50)
- $|\Omega|$: # of groups (10, 20)
- p: Probability that a node belongs to a group
Performance (Synthetic Input)

- \(|N|\): # of nodes (10 ~ 50)
- \(|\Omega|\): # of groups (10, 20)
- \(p\): Probability that a node belongs to a group

![Graph 1](image1.png)

|\(N| = 50, |\Omega| = 10

![Graph 2](image2.png)

|\(\Omega| = 20, p = 0.5
Performance: Dynamics of distributed algorithm

|N| = 50

|N| = 40

|N| = 30

|N| = 20

|N| = 10

Total # of link additions/deletion by distributed algorithm
Extension for link cost optimization

- Link cost function: $c: N \times N \rightarrow R^+$
 - Accounts for node distance, trust level, etc.

- Construct overlay that minimizes the total cost: $c(E) = \sum_{(u,v) \in E} c(u,v)$
Conclusion

- A new problem of building a network constrained by access control policy.

- Build a shared overlay used across multiple access-control groups.

- Optimize over the number of links in the shared overlay
 - Greedy heuristics (centralized and distributed) work pretty well.

- Open problems
 - Partial knowledge in the distributed construction
 - Nodes may not have complete knowledge of group topology.
 - Risk-aware overlay
 - Some nodes are more trustworthy than others.
 - Resilient, efficient, and robust overlay
 - Small diameter
 - Dynamics: Node join/leave; policy updates
 - Compromised nodes; nodes under attack