A Model-Driven Approach for Incorporating Reactive Rules in Declarative Interactive TV Applications

Patrícia Dockhorn Costa, João Paulo A. Almeida, Igor Magri Vale, Izon Thomaz Mielke
CS Department, Federal University of Espírito Santo, Brazil

pdcosta@inf.ufes.br, jpalmeida@ieee.org, igormagrivale@gmail.com, izontm@gmail.com
Context-aware application is a distributed application whose behaviour is affected by its users’ context.
Some Application Areas

- Health Care;
- Smart Home;
- Business Processes;
- Social Network;
- Network Security;
- Interactive Digital TV.
Basic Requirements

Capture → Process → React
Capture Context and Model Behaviour
Various Sensors in a Distributed environment
Supporting Context-Aware Application Development
Supporting Context-Aware Application Development (cont.)

- Quite some work on that:
 - context-aware patterns;
 - services platform (context sources, managers, controllers, action resolvers, etc.);
 - context and situation models;
 - situation reasoning and (distributed) detection;
 - ECA language for modelling reactive behaviours, etc.
The SBTVD

- Better quality of images/videos;
- Provides interactivity;
- Includes standards for data modulation, transmission, data encoding, and a middleware (coined Ginga).
Middleware Ginga

(SOARES e CASTRO, 2008)
Nested Context Language

- Hypermedia authoring language used to describe multimedia applications with space-time synchronization between media objects (e.g., video, audio, images, etc.);
- As such, it does not have built-in concepts for context-handling and reactivity;
- NCLua
 - Scripting language;
 - Allows execution of imperative code in the declarative environment.
ECA-DL TVD

- Domain-specific language;
- Rule-based;
- Describes the reactive behaviour of context-aware applications in the Interactive TV Domain;
- In line with the event-condition-action pattern;
- Rules are defined based on both context and situation models (vocabulary for rule definition).
MDA Approach: Overview

- Context and Situation Models (UML Profile)
- ECA-DL TVD Rules
- Context-Aware Application Models

T1

- Controller (NCL Document)
- Context Sources
- Action Resolvers

- Ginga Platform
- Context Manager Platform

Developer
Transformation Overview

- ECA-DL TVD metamodel
- Context and situation models and ECA-DL rules
- Transformation specification
- Instance of defined in terms of
- NCL model
- Transformation activities (eclipse tools)
- Instance of defined in terms of
- NCL metamodel
- NCL document (XML-like) and NCLua scripts
John uses a web-based bank application through his TV.

Context-aware bank application that hides private information autonomously.
Context-Aware Application in NCL
Case Study: Context Model

```
Place <<RelationalContext>> Presence + has 1 1
Person <<RelationalContext>> Access + isAccessing 1 1
Account <<Entity>> IntangibleEntity + balance : double
SpatialEntity
>+value : int
+isPresent 1
+isAccessed
```

Laboratório de Pesquisa em Redes e Multimídia
Case Study: Situation Model

- Situation “One person in the room”:

```plaintext
{Context SituationOnePersonInRoom inv:
  not presence.oclIsUndefined() AND
  person.isPresent = presence AND
  room.has = presence AND
  presence.value = 1}
```
Case Study: Situation Model

- Situation “Accessing”:

```plaintext
{Context SituationAccessing inv:
  not access.oclIsUndefined() AND
  person.isAccessing = access AND
  account.isAccessed = access}
```
ECA-DL TVD rules

Upon EnterTrue SituationAccessing (person1)
When SituationOnePersonInRoom (room1)
Do startWithBalance(account1)

Upon EnterTrue SituationAccessing (person1)
When SituationMoreThanOnePersonInRoom (room1)
Do startWithoutBalance(account1)

Upon EnterTrue SituationOnePersonInRoom (room1)
Do showBalance(account1)

Upon EnterTrue SituationMoreThanOnePersonInRoom (room1)
Do hideBalance(account1)

Upon EnterTrue SituationNoPersonInRoom (room1)
Do logout(account1)
Entities, Context and situations in NCL

- Entities: mapped to Media elements;
- Intrinsic context types: mapped to Property Anchor elements;
- Relational Context types and Situation types: mapped to Media elements, whose properties are the entities and contexts involved in that situation.
Entities and Intrinsic Context types:

```xml
...<media id="person1" src="scripts/person1.lua" descriptor="person1Desc">
    <property name="person" value="person1" />
    <property name="place" value="room1" />
    <property name="value" value="" />
    <property name="exists" value="false" />
</media>
...
```

Relational Context types:

```xml
...<media id="Presence_person1_room1" src="scripts/Presence_person1_room1.lua" descriptor="Presence_person1_room1_Desc">
    <property name="person" value="person1" />
    <property name="place" value="room1" />
    <property name="value" value="" />
    <property name="exists" value="false" />
</media>
...```

Generated NCL Document
Rules in NCL: connectors and links

- Used to implement synchronism between NCL elements
  - E.g.: at the end of a video, starts another video
- Allows (with some adaptation) implementation of context-aware reaction rules (ECA-DL TVD rules)
Generated Context

Situations

**Upon** onEndAttribution (room1.has.value)
**When** room1.has.value <> 1
**Do** EnterFalse SituationOnePersonInRoom (room1)

```
... <causalConnector id="SituationMoreThanOnePersonInRoom_room1_EnterFalse">
 <compoundCondition operator="and">
 <simpleCondition role="upon10" transition="stops" eventType="attribution" />
 <assessmentStatement comparator="lte">
 <attributeAssessment role="when8" attributeType="nodeProperty" eventType="attribution" />
 <valueAssessment value="1"/>
 </assessmentStatement>
 </compoundCondition>
</causalConnector>

... <link xconnector="SituationMoreThanOnePersonInRoom_room1_EnterFalse">
 <bind component="Presence_person1_room1" interface="value" role="upon10" />
 <bind component="Presence_person1_room1" interface="value" role="when8" />
 <bind component="SituationMoreThanOnePersonInRoom_room1" interface="end" role="action11" />
</link>
...```
Upon EnterTrue
SituationOnePersonInRoom (room1)
Do showBalance(account1)

...<causalConnector id="eca_dl_tvd_rule3">
 <compoundCondition operator="and">
 <simpleCondition role="upon11" />
 <assessmentStatement comparator="eq">
 <attributeAssessment role="upon12" attributeType="nodeProperty" eventType="attribution" />
 <valueAssessment value="true"/>
 </assessmentStatement>
 </compoundCondition>
 <simpleAction role="action14" actionType="set" eventType="attribution" value="true" />
</causalConnector>
...
<link xconnector="eca_dl_tvd_rule3">
 <bind component="SituationOnePersonInRoom_room1" interface="start" role="upon11" />
 <bind component="SituationOnePersonInRoom_room1" interface="start" role="upon12" />
 <bind component="account1" interface="showBalance" role="action14"/>
</link>
...
Our approach provides high-level abstractions to express application behavior conveniently in terms of context events and corresponding application reactions;

Main challenge: transforming a rule-Based specification at the platform-independent level into an implementation platform that is not rule-oriented, while preserving conformance to the standard.
On-going and Future Work

- Improving the ECA-DL TVD editor (which is currently the standard tree editor generated by Eclipse);

- Looking into mobile interactive TV context-aware applications:
 - NCL at the set-top box and rule-based implementations on back-end servers (Drools?);
 - Cope with scalability challenges that arise from managing a large number of mobile devices and context sources.
Thank you!